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Quantum fluctuations and the Lorenz equations 
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Abstract. The quantisation of the Lorenz equations is shown to take the form of a set of 
two complex and one real stochastic differential equations with multiplicative noise. Phase 
diffusion is the dominant feature for small values of the noise. Quantities such as the 
probability of the modulus of the variables are unchanged from those in the classical 
Lorenz equations. Moreover a fractal dimension can be associated with the stochastic 
process for sufficiently small noise. For large noises there is a radical breakdown of this 
picture. 

1. Introduction 

Recently it has become increasingly appreciated that many systems described by a 
small number of coupled ordinary differential equations show behaviour which is more 
complicated than that of a fixed point or of a limit cycle. The attracting sets of such 
flows are called strange. Apart from their peculiar multi-sheeted structure, it is found 
that neighbouring points on the attractors have exponentially diverging trajectories as 
time progresses, and this is an essential feature of the chaos in chaotic attractors. The 
first illustration of such a system was provided by Lorenz [l] in connection with a 
very approximate description of a problem in fluids related to Rayleigh-BCnard flow. 
His equations in suitable variables can be written as 

x = a ( y  - X )  y = z x - y  z = - x y + b ( r - z ) .  (1) 

Sometime later Haken [2] pointed out that the same Lorenz equations are in fact 
quite a good representation of a bad cavity laser with very strong pumping. The Lorenz 
equations are the Maxwell-Bloch [3] equations in this context. These equations have 
been the focus of intensive study both in the past and currently. Within the context 
of laser theory the Lorenz equations represent a semiclassical treatment (i.e. the field 
has been treated classically but the discrete energy level structure of the atoms, truncated 
to two, has been taken into account). It is then natural to ask what are the effects of 
intrinsic quantum fluctuations on a system which, with these fluctuations neglected, 
shows chaos. It must be stated that in an experimental situation there are likely to be 
other more important sources [4] of noise. However, given a particular system it is 
not possible to control the intrinsic fluctuations whereas external noise might be 
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controlled with suitable adjustment of parameters. The question of the role of quantum 
fluctuations has been addressed within the context of Hamiltonian systems. So far 
little has been done for dissipative differential systems. A fundamental qualitative fact 
has to be appreciated. Classical morphologies of chaos are fractal, i.e. have structure 
to arbitrarily small scales. By its very nature, quantum mechanics dictates that phase 
space volumes smaller than the quantum phase space volume h" (where n is some 
suitable integer) cannot be significant. This is a qualitative argument and we need 
suitable quantitative measures for the fuzziness of the attractors. One straightforward 
attempt [ 5 ]  has been recently made which involves truncating the infinite hierarchy of 
differential time evolution equations for correlation functions (implied by the master 
equation for the density matrix of the system). Such truncations are invariably difficult 
to justify and chaos is not a robust property of such systems, i.e. small changes in the 
truncation procedures can result in qualitative changes in the trajectories of the 
correlation functions. Owing to the unreliability of the truncation methods we will 
study the Fokker-Planck equation related to the master equation. 

A dissipative system can be modelled by a purely Hamiltonian [ 6 ]  system where 
Hamiltonians for the heat baths and reservoirs (the sources of dissipation) are explicitly 
included. Standard assumptions concerning the Markov nature of the bath correlation 
and weak coupling of the system of interest to the bath give a master equation for the 
density matrix. This is an operator equation and is difficult to solve in general without 
further approximations [7,8]. Following Wigner [9,10] it is possible to construct 
quantum characteristic functions which generate symmetrised Green functions. The 
master equation implies a corresponding equation for this characteristic function which 
is in general exceedingly complicated. However, since the number of atoms in the 
laser is large, a system size expansion is possible. This implies a Fokker-Planck 
equation for the quasi-probability distribution associated with the characteristic func- 
tion. This distribution is known as the Wigner function. If the diffusion matrix is 
positive definite then it is possible to formulate the Fokker-Planck equation as an 
equivalent Ito stochastic differential equation (SDE) with a deterministic drift part and 
a multiplicative noise contribution. The Wigner phase space consists of two complex 
and one real variable corresponding to the field, polarisation and inversion. The 
expectation value of any product of classical operators with respect to the Wigner 
function is equal to the associated quantum mechanical expectation value for the 
symmetrised product of field, polarisation and inversion operators. In the absence of 
noise, we just recover the standard Lorenz equations. 

In general there are no analytic techniques for solving SDE. Schematically, given 
a stochastic quantity U( t )  which obeys a SDE of the form 

du( t )  = a ( u ( t ) ,  t )  d t+p(u ( t ) ,  t )  d W ( t )  (2) 

where CY and p are arbitrary functions and W ( t )  is the Wiener process, then taking a 
monotonic mesh of time values with t ,  = t we have approximately 

uiil = ui + a( ui,  t i )A t i  + p (  u i ,  t i ) A  Wi.  

ai = ( Y ( t i )  

(3) 

(4) 

This approximation gives the mean and variance of the stochastic process correct to 
O(At) .  It is in principle possible to have higher-order approximations, but the formulae 
become very complicated even at the next order [l l] .  We will base our numerical 

The notation is as follows: 

Ati = t i + l  - ti A Wi = W (  t i+ * )  - W (  t i ) .  
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simulations on the algorithm of equation (3) with the AWi generated by suitable 
random number generators which are widely available. 

It is possible to associate a fractal dimension with self-similar stochastic processes. 
Recently, definitions of dimension similar to, but different from, the usual fractal 
dimension [12] have been introduced. These do not involve box counting algorithms 
for the whole attractor and are easier to use for multidimensional situations. We adopt 
the dimension proposed by Termonia and Alexandrowicz [13,14] which is based on 
the distribution of distances between points in a time series. We find that from small 
to moderate amounts of noise, phase diffusion seems to be the dominant effect and 
the dimension of the attractor (estimated to be 2.08 in the absence of noise) increases 
to 3.02, an increase of about one. This is discussed fully in the next section. When 
the noise is large, there does not seem to be a unique dimension. 

The phase space trajectories for a single representative of the ensemble could be 
regarded as the output for a particular experiment. In particular, the phase portrait 
of the imaginary part of the electromagnetic field against the real part shows rapid 
bursts of radiation with a particular phase, which changes over time. These bursts 
may be experimentally verifiable. Just as in the case of deterministic chaos [15], it is 
interesting to calculate both auto- and cross-correlations of the real and imaginary 
parts of x, y and z. It is important to note that, although the autocorrelation of Re z 
has a much sharper decay in the large noise case, there are still fairly periodic oscillations 
with mean frequency only slightly raised from that found in the ordinary Lorenz model. 
There is no behaviour in the other correlation functions which is not decaying and no 
evidence for any chaotic time evolution. When the probability distribution for Re x 
is calculated the characteristic structure found for the deterministic system is essentially 
smoothed out to give a non-Gaussian decaying probability distribution P. Similar 
behaviour is found for P(Re y) and P(Im y). However, again the z variable does not 
seem to follow this pattern. The distribution of z still retains much of the structure 
found in the purely deterministic case even for quite large values of the noise. 

In 0 2 the details of the master equation, the resultant approximate Fokker-Planck 
equation and Ito stochastic differential equation will be given. In 0 3 the calculations 
sketched above will be discussed fully. 

2. Stochastic differential equations 

The laser medium will be modelled as a homogeneously broadened system of N 
two-level atoms interacting with a single mode of the radiation field in the cavity. 
Pauli raising and lowering operators a; and a; and inversion operator a; are 
associated with the Fth atom. The commutation relations for these operators are 

[a;, a;] = 2a;S,, [a;, U:] = fa;S,,. (5) 
Operators a, at  will denote the single-mode raising and lowering operators. The 
commutation relation is 

[ a ,  a+]  = 1. (6) 
Using standard technique [6] reservoirs (responsible for decays in the system as well 
as for pumping), it is passible to obtain the following Markovian master equation 

_-- dp - [ H ,  PI + (Cap, a+]+ [a ,  P + l )  + LAP. 
dt ih (7) 
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Here 

where k is the wavevector of the field mode, x, is the position vector of the p th  atom, 
K is the cavity damping rate, y1 is the Einstein A coefficient, Yr is the pumping rate 
from the lower to the upper level of the atoms, yo is a rate for the collision-induced 
phase decay of the atoms and g ( = ( 2 ~ o p ~ / h V ) ” ~ )  is the atom-field coupling constant, 
where p is the absolute value of the atomic dipole moment. 

Clearly there is net pumping only if yT > y1. 
We introduce the operators 

N 

p = l  
x =  n x p  

and characteristic function 

The generalised Wigner distribution P is then defined by 

cN(5, 5*, TI, TI*) = . . . dS; d5; d C  d5; dij p(S; P ,  ii, 5; 

x exp i( S;J + f*l* + P$+ f“+ jjv) 

and 

f = c + i G  f =  g+i&,. 

The master equation implies an equation for C and, for this to be satisfied, it is 
sufficient that P satisfies an equation which, to second order in the derivatives, is a 
Fokker-Planck equation. It is useful to introduce scaled variables 

f i  = ( 2 /  N ) f j  (17) 

where 

and no is the saturation photon number given by 

where C = g 2 N / K y l .  
no=  y l N / 8 ~ C  
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In terms of { C1, C2, f l  , fz , rii} the equation for P is 

a 
am + YII 7 (rii - d - 61fl - B 2 f 2 )  

-dfz+l+%2)]+’(<+<))P. am afil av, 4no ax, ax2 

Here 

6 = ( YT - 71 )/ ( Y t  + Y l )  (23 )  

YII = YT+ 71 (24) 

f = Yl1/2Yl.  ( 2 5 )  
The diffusion matrix D in the basis (fl , fz, E l ,  02, rii) has the form 

K - 
2n0 

0 1 D =  

0 

K 

2 
YL 

4KCno 

0 

0 

2 YI 
4KCno 

2 1 2  

-YLwf 2KCno O2 I 
i 2 1 2 -  2 A 2 -  

-rLuf U1 -rluf U 2  Y ? f 2 ( 1 - ~ m )  
2KCno 2KCno KCno , 

Since the D matrix separates into a 2 x 2 and a 3 x 3 block, we will concentrate on the 
latter block and denote it by D(3): 

where a suitable d is given by 

1 0 0 
d = (  0 1 0 

-2df226, -2df2c2 2f ( 1  - dm - d2f2(  e:+ 

d is, of  course, unique only up to orthogonal transformations. Using the given form 
of d it is possible to write down the Ito-Langevin equations corresponding to the 
Fokker-Planck equation. These are 

d 2  = -k(f+2Cif)  d t + ( ~ / 2 n o ) ~ ”  d W, 

d f i  = - rL( 8 + ?FE) dt + [ ~ , / 2 (  KC?IO)~’~] d W, 
(29 )  

(30) 
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x ( -$(fi* d W,+ B d W:)+(l- &ii -62f2fifi*)’/2 d W,) 

d W, = d W, + i  d W2 

Wi ( i  = 1 - 5 )  are independent Wiener processes. In order to make the equations 
reduce, in the absence of noise, to the form of the Lorenz equations given in equation 
( l ) ,  it is necessary to introduce the rescaled variables 

d W, = d W, + i d W4 d W, = d Ws. (32 )  

x = -( b / 2 ) I f 2 f  y = (2b)”’CB z = 2 c f i  (33 )  

and 

T =  ylt 

with the well known Lorenz parameters defined as 

b = YII/ YI ff = X / Y I  r = 2126. (34 )  

(35 )  

(36) 

Then the stochastic generalisation of the Lorenz equations is 

d x  = a ( Y  - X )  dT - ( 2 /  C)*/’VE d W, 

dy = ( X Z  - y ) d~ + 2~ d W, 

dz = - b ( z  - r )  dT- (xy*+  x * y )  d ~ -  ( b m / 4 C 2 ) ( y *  d W, + y  d W:) 

+ 2 3 / 2 ~ b 1 ’ 2 [ l  - r ~ / 4 C ’ - ( r ~ b / 3 2 C ~ ) y y * ] ” ~  d W,. (37 )  

Apart from x and y being complex, a new feature is the introduction of two constants 
E and C. In terms of the laser parameters E is defined as 

E = ( C b / 8 ~ n ~ ) ’ / ~ .  (38)  

These equations are only consistent if 

1 - r z / 4 C 2 - ( r 2 b / 3 2 C 4 ) y y * z 0 .  (39 )  

This condition is equivalent to the requirement of a positive definite diffusion matrix. 
For moderately large C (such as C = 50) the above positivity holds, and these are the 
cases that are being considered. Unless otherwise stated our calculations in the chaotic 
regime will assume r = 28, v = 10, b =! and C = 50. 

3. Statistical and fractal properties 

We will first recall a few properties of the statistical properties [ 1 5 ]  of the standard 
Lorenz equations in the chaotic regime. The quantities studied are P ( x ) ,  the probability 
distribution of x, i.e. the projection of the attractor on the x axis, and normalised 
intensity moments m ( r )  given by 

m ( r )  = [ P(x2)x2‘  dx2( [ P ( x 2 ) x 2  dx2) - r .  
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Moments for r = 2 ,3 ,4  and 5 show a non-Gaussian property. The lowest moments lie 
above those of a negative exponential distribution, but the higher moments fall 
substantially below (reflecting the finite support of the strange attractor). The non- 
Gaussian nature of the statistics is also evident from the symmetric triple-peaked 
structure of P ( x )  with cutoffs at finite values of x. Correlation functions of the variables 
are calculated using the definition 

(41) 
l T  

(A( t )B(O))  = lim 7 5, d tA( t+ t )B(5 )  
T-02 

where A and B may represent any of the Lorenz variables. In particular, as is common 
in quantum optics, g( ' )  and g") are computed. These are defined to be 

g ( ' )  shows little evidence of periodic behaviour and decays fast. g") initially decays 
fast but then falls off more slowly to the asymptotic value of unity and also exhibits 
a regular oscillation. This extra structure in g") is again indicative of non-Gaussian 
statistics. 

In the lasing region ( r  < a( a + b + 3 ) ( a  - b - l)-') it is well known that the phase 
of the field (arg X )  diffuses randomly when the effect of the noise is included. This 
is also true in the chaotic region, as we can see from the X projection of a sample 
trajectory shown in figure 1, where the noise E is 0.1. Interestingly the diffusion seems 
to be most rapid for small values of 1x1; the phase of any one burst of output is relatively 
constant but the phase of successive bursts may differ appreciably. This can be seen 
most clearly from figure 2, an expanded view of the centre of figure 1. As the intensity 
between the bursts is typically quite low (<0.1% of the peak intensity) it appears that 
the system loses its phase memory and is being overridden by the noise. 

If the largest effect of the noise in our model is to change the phase of the field 
(X) and polarisation ( Y) variables, we would expect the probability distributions for 
1x1 and I YI to be less affected than those for Re(X) and Re( Y). Figures 3-11 show 
the unnormalised probability distributions for 1x1, I YJ and 2 for E = 0, 0.1 and 1.0 
respectively. For comparison the unnormalised distributions for Re( X) and Re( Y) 
are shown in figures 12 and 13 for E = 0.1. It is obvious that the distributions for the 
moduli are largely unchanged except for the largest noise case where the peak at the 
origin has been replaced by a dip. 

. 
-12 

-12.oL 

Figure 1. X projection of a sample trajectory with E = 0.1. 
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Figure 2. An expanded version of the centre of figure 1.  

0 3 0  60 90 120 1 5 0  

Figure 3. Probability distribution for 1x1 with E = 0. 

Figure 4. Probability distribution for 1 YJ with E = 0. 

This is further borne out by examining the normalised moments of the intensity 
distribution. These are given in table 1 and it is apparent that for E < 1 the moments 
are essentially unchanged, indicating that the effect of the noise has largely been 
confined to altering the phase of the field rather than its intensity. We note that for 
the largest noise the moments are considerably reduced. This is consistent with the 
distribution for 1x1 being peaked away from the origin when E = 1 (see figure 9) and 
hence we would also expect a more peaked distribution for (X(*. In fact, in the absence 
of noise the point ( x = y = O  and z =  r )  has a two-dimensional stable manifold. 
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Figure 5. Probability distribution for z with E = 0. 

Figure6. Probability distribution for (XI with E = 0.1. 

Figure 7. Probability distribution for I YI with E = 0.1. 

Moreover the velocity of motion near this point is very slow. This gives a peak at 
1x1 = 0 for the distribution for 1x1. In the presence of noise it would be expected that 
the trajectories would receive impulses transverse to the manifold and along the unstable 
manifold. This would shift the peak of the distribution for 1x1 away from the origin. 

The effect of the noise on the autocorrelations is small except for the largest values 
used ( E  = 1) where we find that the correlations decay a little more rapidly. This is 
apparently because the phase of the field diffuses slowly compared with the decay 
times of the autocorrelations for X and Y and the noise amplitudes we have used do 
not appreciably alter the moduli of the system. This is consistent with the findings of 
Zippelius and Lucke [16] who studied the standard Lorenz model with constant 
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-190 - 9 0  1 0  11.0 21 0 

Figure8. Probability distribution for z with E = 0.1. 

0.0081 

0 3 0  6.0 90  1 2 0  150 

Figure9. Probability distribution for 1x1 with E = 1.0. 

0.077 

0.062 

0.046 

0.031 

I 0,015 

0 5 0  1 0 0  1 5 0  2 0 0  28.0 

Figure 10. Probability distribution for I YI with E = 1.0. 

amplitude additive noise. They found that there was little change in the autocorrelations 
for noise amplitudes below 1. 

Figures 14 and 15 show (Re x ( t )  Re x ( t  + T)) for E = 0 and E = 1.0, figures 16 and 
17 show the same for Y and figures 18 and 19 show ( z ( t ) z ( t  + 7)). Notice that the 
strong oscillations in figure 18 decay more rapidly in figure 19. 

Various exponents, collectively known as fractal dimensions [ 121, have been intro- 
duced in the study of deterministic chaos to measure the non-Euclidean topology of 
strange attractors. Whereas the original Lorenz equations involve three variables, the 
corresponding SDE have two complex and one real. We have seen already that the 
trajectories explore this larger space and consequently the fractal dimension of the 
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Figure 11. Probability distribution for z with E = 1.0, 

-14.0 -0 .4 -2.4 3.6 9 6  160 

Figure 12. Probability distribution for Re x with E =0.1. 

Figure 13. Probability distribution for Re y with E = 0.1. 

Table 1. Normalised intensity moments. 

Epsilon M 2  M3 M 4  M5 

0 2.28 6.6 21.5 75.4 
0.01 2.32 6.8 22.1 17.4 
0.03 2.31 6.1 21.7 16.5 
0.1 2.33 6.8 22.1 11.4 
1.0 1.91 4.11 13.35 41.8 
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Figure 14. (Re x( 1 )  Re x( t + 7 ) )  for E = 0. 

41 o o r  

Figure 16. (Re y (  t )  Re y (  t + 7 ) )  for E = 0. 

68.0 92'0h 

0 1 0  2 0  3 0  4 0  50 

Figure18. ( z ( t ) z ( t + 7 ) )  for E=O. 

Figure 15. (Re x( t )  Re x( f + 7)) for E = 1.0. 

*l.OO[l 

Figure 17. (Re y (  t )  Re y (  t + 7 ) )  for E = 1.0. 

Figure19. ( z ( t ) z ( t + T ) )  for ~ = 1 . 0 .  

stochastic process would be expected to be greater than that found for the deterministic 
case. That is what is found. A well known dimension used frequently is the capacity 
DF. If the strange attractor is embedded in a suitable d-dimensional space and if 
N (  E )  is the number of d-dimensional spheres of radius E needed to cover the attractor, 
then 

N (  E )  - as E + O .  (44) 

However when d becomes large the algorithms based on this definition become 
computationally intractable. A dimension DFr has, recently been proposed [ 13, 141 
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which is comparatively easy to calculate even for high d. If the attractor is covered 
by N spheres containing just n points of the time series, it has been argued that 

n - ( R ( n ) ) -  (45) 

where (R( n))" is the average volume of a box containing n points. Points on the time 
series are chosen at random and the distances to all other points in the time series can 
be calculated. This gives enough information to calculate R( n) and hence DF'. It is 
necessary to have a sufficiently long time series since, if it is too short, the distances 
can begin to become comparable with the total size of the attractor (i.e. the outer scale 
of the fractal) for the larger values of n. This tends to reduce the values of DF, obtained 
from the method unless R and n are suitably restricted. The dimensions given below 
have all been obtained from the small-n region ( n  4 500) where outer scale effects 
should be negligible. For a stochastic process such calculations are meaningful if DF, 
is independent of different realisations of the noise [12]. For large values of the noise 
( E  - 0.3) we have checked that the same values were obtained for different members 
of an ensemble of lo4 point time series and for successive lo4 point sections of a longer 
time series. This provides a weak first check on the ergodicity of this stochastic fractal 
process. 

For the best accuracy we considered the longest time series that was practicable 
for us (using a Cray computer). Time series consisting of 5 x lo5 points spaced at 
intervals of 0.2 of a Lorenz time were used (i.e. lo5 time units in each set). For E = 0, 
R ( n )  was obtained from averaging over 512 randomly chosen points. This gave 
DFf-2.16. Similarly, for E = 0.1, with an average over 640 points, DFv-3.11 (see table 
2). Of course lo5 time units allows the phase to have diffused freely around 2.rr many 
times. This has been checked by examining projections of sample sections of the 
trajectories. In the above cases a unique fractal dimension was compatible with the 
data sets. No evidence for an inner scale was seen. It is always possible that for a 
longer time series evidence for an inner scale might appear. The larger the noise, the 
larger will be the inner scale. Hence by examining a case such as E = 0.3 it may be 
possible to find the effects of an inner scale with a time series of 5 x lo5 points. This 
is indeed the case. In table 3 DFs is given as a function of n. There is a steady increase 
of DFj as n decreases. It could well be that for even longer time series there could be 
evidence for D tending to 5 which would correspond to a fivefold product of indepen- 
dent Wiener processes. These findings are reinforced for larger noise cases. Hence 
the process is not self-similar and we cannot rigorously use the concept of fractal 
dimension in these cases. However it is still informative to note that, although the 
small scale structure has been modified, the larger scale clustering has been altered 
from the intermediate noise ( E  s 0.1) cases. It appears therefore that, although the 
attractor may be locally smeared out, some of its structure still survives. Moreover 

Table 2. Fractal dimensions (at scales beyond inner scale). 

Epsilon Dp +/- standard error of the mean 

0 2.16 0.03 
0.01 3.07 0.04 
0.03 3.03 0.04 
0.1 3.11 0.02 
1 .o 3.48 0.02 
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Table3. Inner scale effects for E =0.3. 

Range of n DF 

[1,101 3.7 
[ 10,201 3.5 
PO, 301 3.38 
[50,601 3.31 
[loo, 1101 3.23 
[200,210] 3.18 
[490,500] 3.16 

this structure seems to be dominated by phase diffusion and this is compatible with 
the increase of the fractal dimension by about one from the deterministic situation 
(since the phases of X and Y are closely related). 

After this work was completed we came across the paper of Graham [ 17) in which 
the Wigner representation was also used. However, apart from this similarity, the 
approaches are quite different, Graham concentrating on approximate analytic tech- 
niques to obtain information on the structure of the attractor in the limit of small noise. 

Acknowledgments 

HJC thanks RSRE Malvern for its hospitality while he was a Visiting Research Fellow. 
JSS acknowledges the funding of RSRE of his Research Associateship at the Clarendon 
Laboratory, Oxford. One of us (SS) thanks J N Elgin for discussions. 

References 

Lorenz E N 1963 J. Amos. Sci. 20 130 
Haken H 1975 Phys. Lett. 53A 77 
Bloch F 1964 Phys. Rev. 70 460 
Feynman R P, Vernon F L and Hellwarth R W 1957 J. AppL Phys. 28 49 
Lamb W E Jr 1964 Phys. Rev. 134 A1429 
Haken H and Sauermann H 1963 2. Phys. 173 261 
Schenzle A and Brand H 1978 Opt. Commun. 27 485 
Elgin J N and Sarkar S 1984 Phys. Rev. Lett. 52 1215; 53 1507 
Graham R 1984 Phys. Rev. Lett. 53 1506 
Haken H 1970 Laser 7heory. Encyclopaedia of Physics XXV/2c (Berlin: Springer) 
Drummond P D and Walls D F 1981 Phys. Rev. A 23 2563 
van Kampen N G 1976 Phys. Rep. 24C 171 
Wigner E P 1932 Phys. Rev. 40 749 
Lugiato L A, Casagrande F and Pizzuto L 1982 Phys. Rev. A 26 3483 
Satchell J S and Sarkar S 1986 J. Phys. A: Math. Gen. 19 2737-49 
Mandelbrot B B 1982 7he Fractal Geometry of Nature (San Francisco: Freeman) 
Termonia Y and Alexandrowin Z 1983 Phys. Rev. Lett. 51 1265 
Grassberger P and Procaccia I 1983 Phys. Rev. Lett. 50 346 
Broomhead D S, Elgin J N, Jakeman E, Sarkar S, Hawkins S C and Drazin P 1984 Opt. Commun. 50 

Zippelius A and Liicke M 1981 J. Star. Phys. 24 345 
Graham R 1984 Phys. Rev. Lett. 53 2020 

56 


